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Introduction

• Generally speaking, we say that a structure X is reversible iff all its
bijective endomorphisms are automorphisms

• The class of reversible structures contains, for example, compact
Hausdorff and Euclidian topological spaces, linear oders, Boolean
lattices, well founded posets with finite levels, tournaments, n-regular
graphs, Henson graphs etc.

• extreme elements of L∞ω-definable classes of interpretations under
certain syntactical restrictions are reversible (Kurilić, M.)

• monomorphic (chainable) structures are reversible (Kurilić)
• Rado graph, the random poset, the ideal 〈Fin,⊆〉, the lattices 〈N, |〉 and
〈ω, |〉 are non-reversible structures (Kurilić)

• Reversible structures have the property Cantor-Schröder-Bernstein
(shorter CSB) for condensations (bijective homomorphisms)

• each class of reversible posets yields the corresponding class of
reversible topological spaces if we observe topology generated by the
basis consisting of principal ideals
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Variations of reversibility

Definition
We say that an L-interpretation ρ ∈ IntL(X) is:
• strongly reversible iff [ρ]∼= = {ρ} (or, equivalently, [ρ]∼c = {ρ})
• reversible iff [ρ]∼= (or, equivalently, [ρ]∼c) is an antichain in the Boolean

lattice 〈IntL(X),⊆〉
• weakly reversible iff [ρ]∼= is a convex set in the Boolean lattice
〈IntL(X),⊆〉

Proposition
Let X be a nonempty set and L a relational language. Then we have:
(a) sRevL(X) ⊆ RevL(X) ⊆ wRevL(X);
(b) Strong reversibility, reversibility and weak reversibility are ∼c-invariants
(and, hence, ∼=-invariants) on the set IntL(X).
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Strong reversibility

Strongly reversible relations are also known in the literature under the name
of constant relations.

Theorem
Let X be a nonempty set and L = 〈Ri : i ∈ I〉 a relational language. For an
interpretation ρ ∈ IntL(X) the following conditions are equivalent:
(a) ρ is strongly reversible;
(b) ρc is strongly reversible;
(c) Aut(ρ) = Sym(X);
(d) Cond(ρ) = Sym(X);
(e) Each relations ρi, i ∈ I, is strongly reversible;
(f) Each relation ρi, i ∈ I, is a subset of the set Xni definable by an L∅-formula,
without quantifiers and parameters.

As a consequence, we have that sRevL(X) is a complete regular subalgebra of
the complete Boolean algebra IntL(X), and, in particuar, we have that

sRevLb(X) = {∅,∆X,∆
c
X,X

2}.
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Reversibility

Theorem
Let X be a nonempty set and L = 〈Ri : i ∈ I〉 a relational language. For an
interpretation ρ ∈ IntL(X) the following conditions are equivalent:
(a) ρ is reversible;
(b) ρc is reversible;
(c) Aut(ρ) = Cond(ρ);
(d) Cond(ρ) is a subgroup of the symmetrical group Sym(X).

We have that FcfL(X) ⊆ RevL(X), where

FcfL(X) := {ρ ∈ IntL(X) : ∀i ∈ I (|ρi| < ω ∨ |Xni \ ρi| < ω)}.

Therefore, if the set X is finite, we have that RevL(X) = IntL(X). Also,
fRevL(X) ⊆ RevL(X), where

fRevL(X) := {ρ ∈ IntL(X) : |Cond(ρ)| < ω}.
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Weak reversibility

We say that an interpretation ρ ∈ IntL(X) has the property Cantor-Schröder-
Bernstein for condensations iff whenever f : 〈X, ρ〉 → 〈X, σ〉 and g : 〈X, σ〉
→ 〈X, ρ〉 are condensations, we have that ρ ∼= σ, for arbitrary σ ∈ IntL(X).

Theorem
Let X be a nonempty set and L = 〈Ri : i ∈ I〉 a relational language. For an
interpretation ρ ∈ IntL(X) the following conditions are equivalent:
(a) ρ is weakly reversible;
(b) ρc is weakly reversible;
(c) [ρ]∼= = [ρ]∼c ;
(d) ρ has the property Cantor-Schröder-Bernstein for condensations.

Given ρ ∈ IntL(X) let us define the following L-interpretation:

ρ∗ :=
⋃{

σ ∈ At(IntL(X)+) ∩ ρ↓ : ρ ∼= ρ \ σ
}
.
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Reversibility vs. weak reversibility

In particular, if L = Lb, then ρ∗ =
{
〈x, y〉 ∈ ρ : ρ ∼= ρ \ {〈x, y〉}

}
.

Theorem
Let X be a nonempty set and L = 〈Ri : i ∈ I〉 a relational language. For an
interpretation ρ ∈ wRevL(X) we have:
(a) ρ∗ = 〈∅ : i ∈ I〉 ⇐⇒ ρ ∈ RevL(X);
(b) ∀i ∈ I

(
(ρ∗)i 6= ∅ =⇒ |(ρ∗)i| > ω

)
.

Consequently, we have that in the following classes of binary structures weak
reversibility and reversibility are equivalent properties:
• equivalence relations and graphs
• dense partial orders and disjoint unions of chains
• trees having < ω maximal elements
• separative posets having < ω minimal elements
• lattices where each element (except, maybe, the largest) is ∧-reducible
• lattices where each element (except, maybe, the smallest) is ∨-reducible
∨-razloživ
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Characterization of some CSB structures

Theorem
Let ∼ be an equivalence relation on a set X and let X /∼ = {Xi : i ∈ I} be the
corresponding partition. Then the structure X := 〈X,∼〉 has the property CSB
for condensations iff the sequence of cardinals 〈|Xi| : i ∈ I〉 is finite-to-one, or
it is a reversible sequence of natural numbers.

For a sequence of ordinals 〈αi : i ∈ I〉, where αi = γi + ni, let us define sets

Iα := {i ∈ I : αi = α}, for α ∈ Ord, Jγ := {j ∈ I : γj = γ}, for γ ∈ Lim0 .

Theorem
Poset

⋃
i∈I αi has the property CSB for condensations iff exactly one of the

following two cases holds:
(I) The sequence 〈αi : i ∈ I〉 is finite-to-one,
(II) There exists γ := max{γi : i ∈ I}, for α ≤ γ we have that |Iα| < ω, and
the sequence of natural numbers 〈ni : i ∈ Jγ \ Iγ〉 is reversible, but not
finite-to-one.
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Examples

Example

• Rado graph, the random poset, ideal 〈Fin,⊆〉, lattices 〈N, |〉 and 〈ω, |〉 do
not have the property CSB for condensations.

• The class wRevLb(ω) \ RevLb(ω) contains various structures:
1. If X1 = 〈ω, ρ1〉 :=

⋃
ω L2 ∪

⋃
ω 1, then ρ1 ∈ wRevLb(ω) \ RevLb(ω),

and the structure X1 is a non-rooted tree.
2. If X2 = 〈ω, ρ2〉 := 1 + X1, then ρ2 ∈ wRevLb(ω) \ RevLb(ω), and the
structure X2 is a rooted tree.
3. If X3 = 〈ω, ρ3〉 := (Aω + 1) ∪

⋃
ω 1, then

ρ3 ∈ wRevLb(ω) \ RevLb(ω), and the structure X3 is a separative poset.

4. If X4 = 〈ω, ρ4〉 := 1 +
(⋃

ω L4 ∪
⋃
ω B2

)
+ 1, then

ρ4 ∈ wRevLb(ω) \ RevLb(ω), and the structure X4 is a lattice.
5. The structure X1 is disconnected and Xc

1 is connected.
6. The structure X2 is bi-connected.
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Properties of weakly reversible interpretations

Proposition

Let X be a nonempty set and L a relational language. If
ρ ∈ wRevL(X) \ RevL(X) we have:
(a) The interpretation ρ∗ is not reversible;
(b) The interpretation ρ \ ρ∗ is not finitary reversible;
(c) ρ 6∼= σ, and thus also ρ 6∼c σ, for each σ ⊆ ρ \ ρ∗;
(d) If ρ \ ρ∗ ∈ RevL(X), and if L = Ln = 〈R〉, where ar(R) = n, then
ρ ∼= ρ \ σ, for each σ ∈ [ρ∗]<ω;
(e) If ρ \ ρ∗ ∈ sRevL(X), then ρ∗ ∈ wRevL(X);
(f) If ρ∗ ∈ wRevL(X) or ρ \ ρ∗ ∈ RevL(X), then (ρ∗)∗ = ρ∗.
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Examples

Example

ρk ∈ wRevLb(ω) \ RevLb(ω), for k ∈ {1, 2, 3, 4}.

1. If X1 = 〈ω, ρ1〉 :=
⋃
ω D2 ∪

⋃
ω 1, then

ρ∗1 = ρ1 ∈ wRevLb(ω) \ RevLb(ω), ρ1 \ ρ∗1 = ∅ ∈ sRevLb(ω)

Cond(ρ1) = Cond(ρ∗1), (ρ∗1)∗ = ρ∗1.

2. If X2 = 〈ω, ρ〉 := G2 ∪
⋃
ω D2 ∪

⋃
ω 1, then

ρ∗2 ∈ wRevLb(ω) \ RevLb(ω), ρ2 \ ρ∗2 ∈ RevLb(ω) \ sRevLb(ω),

Cond(ρ2) ( Cond(ρ∗2), (ρ∗2)∗ = ρ∗2.
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Examples and open questions

3. If X3 = 〈ω, ρ3〉 :=
⋃
ω G2 ∪

⋃
ω D2, then

ρ∗3 6∈ wRevLb(ω), ρ3 \ ρ∗3 ∼= ρ1 ∈ wRevLb(ω) \ RevLb(ω),

Cond(ρ3) ( Cond(ρ∗3), ∅ = (ρ∗3)∗ ( ρ∗3.

4. If X4 = 〈ω, ρ4〉 =
⋃
ω C3 ∪

⋃
ω D3, then

ρ∗4 6∈ wRevLb(ω), ρ4 \ ρ∗4 6∈ wRevLb(ω),

Cond(ρ4) ( Cond(ρ∗4), ∅ = (ρ∗4)∗ ( ρ∗4.

Here we encounter the following open questions:
1. Is there a ρ ∈ wRevL(X) \ RevL(X) such that ρ∗ ∈ wRevL(X) and
ρ \ ρ∗ 6∈ RevL(X)?
2. Is there a ρ ∈ wRevL(X) \ RevL(X) such that ρ∗ 6∈ wRevL(X) and
ρ \ ρ∗ ∈ RevL(X)?
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On interpretations of arbitrary languages

Proposition

Let X be a nonempty set and L = 〈Ri : i ∈ I〉 a relational language. Then for
an interpretation ρ = 〈ρi : i ∈ I〉 ∈ IntL(X) we have:
(a) The interpretation ρ is strongly reversible iff each relation ρi, i ∈ I, is
strongly reversible;
(b) If relations ρi, i ∈ I, are reversible then the interpretation ρ is reversible;
(c) If there exists i0 ∈ I such that the relation ρi0 is weakly reversible, and
such that relations ρi, i ∈ I \ {i0}, are strongly reversible, then the
interpretation ρ is weakly reversible.

If we substitute strong reversibility with reversibility in (c), the statement fails
to be true.
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Open questions

Here we encounter some basic open questions that are still open. Namely, let
L = 〈R1,R2〉, where ar(R1) = ar(R2) = 2:
1. Is there a ρ = 〈ρ1, ρ2〉 ∈ wRevL(X) \ RevL(X) such that

{ρ1, ρ2} ∩
(

wRevLb(X) \ RevLb(X)
)

= ∅?

2. Is there ρ = 〈ρ1, ρ2〉 ∈ wRevL(X) \ RevL(X) such that

{ρ1, ρ2} ∩ sRevLb(X) = ∅?
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